A View of Mathematics Through A Camera Lens

by Donald M. Fairbairn

Consider the operation of a camera lens:

f-stop = $\frac{focal length of lens}{aperture diameter}$

$$f = \frac{l}{d}$$

Observe that as d decreases (the lens closes), then f increases.

Now the amount of light admitted depends on the area of the aperture, which in turn depends on d.

$$A = \pi r^{2} = \pi \left(\frac{d}{2}\right)^{2} = \frac{\pi}{4}d^{2}$$

and since $f = \frac{l}{d}$, $d = \frac{l}{f}$ and $A = \frac{\pi}{4}\frac{l^{2}}{f^{2}}$

For a standard 50 mm, I = 50 mm, so for f = 1.4, $A_{1.4} \approx 1001.28$ and for f = 2, $A_2 \approx 490.87$. Observe that $A_2 \approx \frac{1}{2}A_{1.4}$. This pattern will continue. The area is halved at each successive f-stop. Now if A is halved each time, then f^2 is doubled. Hence f is multiplied by $\sqrt{2}$. Thus, the f-stop numbers represent this progression:

1, $\sqrt{2}$, 2, $2\sqrt{2}$, 4, $4\sqrt{2}$, 8, $8\sqrt{2}$, 16, $16\sqrt{2}$, 32, $32\sqrt{2}$, which is a geometric sequence!

The amount of light that enters a camera is determined by the f-stop setting of the lens. The commonly used f-stop numbers are 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, and 45.