SUPPLEMENTARY EXERCISES WITH LOGARITHMS

By Alex Pintilie

1) Which numbers x satisfy the equation: $(\log_3 x)(\log_x 5) = \log_3 5$?

2) Suppose that the Canadian dollar loses 5% of its value each year. How many years are needed in order that the Canadian dollar to lose 90% of its value ? (That is, the future value of the dollar to become the present value of a dime.)

3) Simplify the product: $P = (log_2 3)(log_3 4)(log_4 5) \dots (log_{31} 32)$

4) If
$$p = \frac{\log_{\delta} (\log_{a} a^{2})}{\log_{\delta} a}$$
 find a^{p}

- 5) If $\log_{b}(xy) = 11$ and $\log_{b}(x/y) = 5$, what is $\log_{b} x$?
- 6) Positive integers A, B, and C, with no common factor greater than 1, exist such that

 $A \log_{200} 5 + B \log_{200} 2 = C$. What is A + B + C?

7) What is the value of
$$25^{\frac{1}{2} - \log_5 \sqrt{2}}$$
?

8) A computer manufacturer finds that when x millions of dollars are spent on research, the profit, P(x), in millions of dollars, is given by $P(x) = 20 + 51 \circ g_3(x+3)$. How much should be spent on research to make a profit of 40 million dollars?

- 9) Solve the system of equations $y = \log_2 2x$ and $y = \log_4 x$.
- 10) Solve the equation $\log_3(x-2) + \log_3 10 = \log_3 (x^2 + 3x 10)$
- 11) $\log_2(9-2^x) = 3 x$

Answers:

1) all
$$x > 0, x \neq 1$$
2) about 45 years3) $P = 5$ 4) $a^p = 2$ 5) 86) 67) 5/28) 78 million9) (1/4, -1)10) $x = 5$ 11) 0, 3