I. Multiple Choice

____ 1. Which of the following represents the quotient of

$$(x^5 - x^4 + 6x^3 - 2x^2 + x - 8) \div (x - 1)$$
?

A.
$$x^4 - 2x^3 + 4x^2 + 2x + 3 - \frac{5}{x-1}$$

B.
$$x^4 + 6x^2 - 8x - 7 - \frac{15}{x - 1}$$

C.
$$x^4 + 6x^2 + 6x + 7 - \frac{1}{x-1}$$

D.
$$x^4 + 6x^2 + 4x + 5 - \frac{3}{x-1}$$

2. Which of the following could be used to perform the synthetic division for $(x^2 + 6x^4 - 7x^3 + 3) \div (x + 4)$

3. Which is the remainder when $(x^6 + x^5 - 2x^4 + 2x^3 + 3x^2 - 4x + 6)$ is divided by (x-3)?

- A. 885
- B. 876
- C. 315
- D. 1205

II. Long Division

Perform the following long division problems using ANY method: SHOW ALL WORK.

4.
$$(2m^3 + 8m^2 - 7m + 12) \div (m+2)$$

5.
$$(8v^4 - 2v^2 + v + 4) \div (v - 1)$$

6.
$$(2x^3 + x^2 - 8x + 9) \div (2x - 3)$$

III. The first polynomial is a factor of the second polynomial. Show **ALL** the linear factors of the second polynomial.

7.
$$2x+1$$
; $4x^3+12x^2-19x-12$

8.
$$x-3$$
; $4x^3-8x^2-11x-3$

IV. Write out all the *possible* rational solutions for each equation.

$$2x^3 - 8x^2 + 4x + 3 = 0$$

$$\underline{\qquad} 10. \qquad x^4 - 2x^2 + 7 = 0$$

V. Solve the following equations over the set of complex numbers:

11. Solve for x:
$$x^3 - 1 = 0$$

12. Solve for x:
$$x^3 + 3x^2 - 4 = 0$$

VI. Miscellaneous

13. Two of the solutions of $x^4 - 2x^3 + 3x^2 + 2x + 2 = 0$ are i and -1 + i.

How many other solutions are there and what are they?

14. One solution of $x^3 + 4x^2 - 19x - 6 = 0$ is $\frac{-7 - \sqrt{41}}{2}$. Find the other solutions.

Extra Credit:

Given the solutions of an equation are x = 2, x = -1, and $x = \frac{2}{3}$,

Determine the equation in standard form (with integral coefficients).