- 1. If $y = (x^4 + 1)^3$, then $\frac{\partial y}{\partial x} =$
 - A) $(4x^3)^2$
 - B) $3(4x^3)^2$
 - c) $3(x^4+1)^2$
 - D) $3x^3(x^4+1)^2$
 - E) $12x^3(x^4+1)^2$
- 2. $\int_0^1 e^{-6x} dx =$
 - A) $\frac{-e^{-6}}{6}$ B) $-6e^{-6}$ C) $-e^{-6} 1$

 - D) $\frac{1}{6} \frac{e^{-6}}{6}$ E) $6 6e^{-6}$
- 3. For $x \ge 0$, the horizontal line y = 3 is an asymptote for the graph of the function f. Which of the following statements must be true?
 - A) f(0) = 3
 - B) $f(x) \neq 3$ for all $x \geq 0$
 - C) f(3) is undefined.
 - D) $\lim_{n\to 3} f(x) = \infty$
 - E) $\lim_{n\to\infty} f(x) = 3$
- 4. If $y = \frac{3x+4}{4x+3}$, then $\frac{\partial y}{\partial x} =$
 - A) $\frac{28x+25}{(4x+3)^2}$ B) $\frac{28x-25}{(4x+3)^2}$ C) $\frac{7}{(4x+3)^2}$ D) $\frac{-7}{(4x+3)^2}$

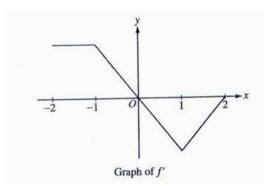
 - E) $\frac{3}{4}$

5.
$$\int_0^{\pi/4} \cos(x) \, dx =$$

A)
$$-\frac{\sqrt{2}}{2}$$

B)
$$\frac{\sqrt{2}}{2}$$

A)
$$-\frac{\sqrt{2}}{2}$$
B) $\frac{\sqrt{2}}{2}$
C) $-\frac{\sqrt{2}}{2} - 1$
D) $-\frac{\sqrt{2}}{2} + 1$
E) $\frac{\sqrt{2}}{2} - 1$


D)
$$-\frac{\sqrt{2}}{2} + 1$$

E)
$$\frac{\sqrt{2}}{2} - 1$$

6.
$$\lim_{x\to\infty} \frac{x^3-3x^2+4x-5}{5x^3-3x^2+2x-3} =$$

C)
$$\frac{1}{5}$$

E)
$$\frac{5}{3}$$

- 7. The graph of f', the derivative of the function f, is shown above. Which of the following statements is true about f?
 - f is not differentiable at x = -1 and x = 1. A)
 - f is decreasing for $-1 \le x \le 1$. B)
 - f is increasing for $1 \le x \le 2$. C)
 - f has a local maximum at x = 0. D)
 - f has a local minimum at x = 0.

8.
$$\int x^3 \cos(x^4) dx$$

$$A) \quad -\frac{1}{4}cos(x^4) + C$$

$$B) \qquad \frac{1}{4}sin(x^4) + C$$

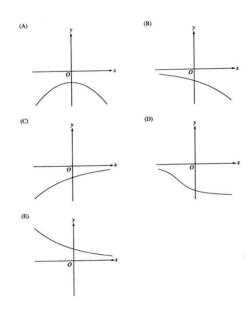
$$C) \quad -\frac{x^4}{4}sin(x^4) + C$$

A)
$$-\frac{1}{4}cos(x^4) + C$$

B) $\frac{1}{4}sin(x^4) + C$
C) $-\frac{x^4}{4}sin(x^4) + C$
D) $\frac{x^4}{4}sin(x^4) + C$
E) $\frac{x^4}{4}sin(\frac{x^4}{4}) + C$

E)
$$\frac{x^4}{4} sin\left(\frac{x^4}{4}\right) + C$$

9. If
$$f(x) = ln(x+5+e^{-5x})$$
 , then $f'(0)$ is


A)
$$-3$$

B)
$$\frac{1}{6}$$

C)
$$-\frac{2}{3}$$

D)
$$\frac{2}{3}$$

10. The function f has the property that f(x) < 0, f'(x) > 0, f''(x) < 0 for all real values x. Which of the following could be the graph of f?

11. Using the substitution u=3x+2 , $\int_0^1 \sqrt{3x+2}\ dx$ is equivalent to

A)
$$\frac{1}{3} \int_{-1/3}^{1/3} \sqrt{u} \ du$$

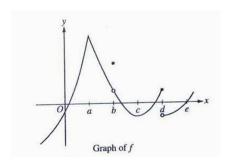
B)
$$\frac{1}{3} \int_{0}^{1} \sqrt{u} \ du$$

$$C) \quad \frac{1}{3} \int_2^5 \sqrt{u} \ du$$

D)
$$\int_0^1 \sqrt{u} \ du$$

E)
$$\int_2^5 \sqrt{u} \ du$$

12. The rate of change of the volume, *V*, of water in a tank with respect to time, *t*, is directly proportional to the cube root of the volume. Which of the following is a differential equation that describes this relationship?


A)
$$V(t) = k \sqrt[3]{t}$$

$$\mathbf{B)} \ \ V(t) = k \sqrt[3]{V}$$

$$C) \quad \frac{dV}{dt} = k \sqrt[3]{t}$$

$$D) \quad \frac{dV}{dt} = \frac{k}{\sqrt[3]{V}}$$

$$E) \quad \frac{dV}{dt} = k \sqrt[3]{V}$$

- 13. The graph of the function f is shown above. At which value(s) of x is f not differentiable?
 - A) a
 - B) a and b
 - C) a and d
 - b and d
 - E) a, b, and d

14. If
$$y = x^3 \sin(3x)$$
, then $\frac{dy}{dx} =$

A)
$$3x^2\cos(3x)$$

B)
$$9x^2 cos(3x)$$

c)
$$3x^2[sin(3x) + cos(3x)]$$

D)
$$3x^2[sin(3x) - cos(3x)]$$

E)
$$3x^2[sin(3x) + xcos(3x)]$$

15. Let f be a function with derivative given by $f'(x) = x^2 + \frac{2}{x}$. On which of the following intervals is f decreasing?

A)
$$(-\infty, 0)$$
 only

B)
$$(-\infty, 0)$$
 and $(0, 1]$

C)
$$[1, \infty)$$
 only

D)
$$(-\sqrt[3]{2},0)$$
 only

E)
$$(-\infty, -\sqrt[3]{2})$$
 only

16. If the line tangent to the graph of the function f at the point (1,5) passes through the point (-3,-3) then f'(1) is

17. Let f be the function given by $f(x) = 3xe^x$. The graph of f is concave down when

A)
$$x < -3$$

B)
$$x > -3$$

c)
$$x < -2$$

D)
$$x > -2$$

E)
$$x < 0$$

Х	-5	-4	-3	-2	-1	0	1	2	3
g'(x)	3	4	0	-4	-3	-2	-1	0	4

18. The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals?

A)
$$-3 \le x \le 2$$
 only

B)
$$-2 \le x \le 1$$
 only

c)
$$x \ge -3$$

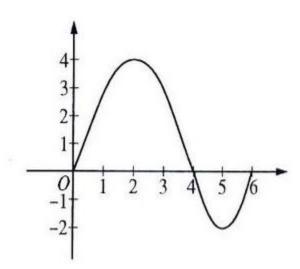
D)
$$x \ge -2$$
 only

E)
$$-3 \le x \text{ or } x \ge 2$$

19. A curve has slope 4x + 2 at each point (x, y) on the curve. Which of the following is an equation for the curve if it passes through the point (1, 3)?

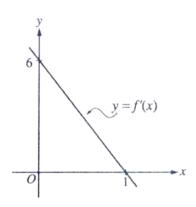
A)
$$y = 6x - 3$$

B)
$$y = 2x^2 + 1$$


c)
$$y = 2x^2 + 2x - 1$$

D)
$$y = 2x^2 + 2x + 1$$

E)
$$y = x^2 + x - 4$$


$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

- 20. Let f be the function given above. Which of the following statements about f is false?
 - I. $\lim_{x\to 3} f(x)$ exists.
 - II. f is continuous at x = 3.
 - III. f is differentiable at x = 3.
 - A) None
 - B) I only
 - C) II only
 - D) III only
 - E) I and II only

Graph of f"

- 21. The second derivative of the function f is given by "(x) = x(x-4)(x-6). The graph of f'' is shown above. For what values of x does the graph of f have a point of inflection?
 - A) 0, 4, and 6 only
 - B) 2 and 5 only
 - C) 4 only
 - D) 5 only
 - E) 6 only

- 22. The graph of f', the derivative of f, is the line shown in the figure above. If $f(\mathbf{0})=\mathbf{4}$, then $f(\mathbf{1})=\mathbf{1}$
 - A) 0
 - B) 3
 - C) 4
 - D) 7
 - E) 11

$$23. \frac{d}{dx} \left(\int_0^{x^3} \cos(t^2) dt \right) =$$

- A) $-\sin(x^6)$
- B) $\cos(x^2)$
- c) $\cos(x^6)$
- D) $x^3 \cos(x^6)$
- E) $3x^2\cos(x^6)$
- 24. Let the function defined by $f(x) = 6x^3 4x + 1$. Which of the following is an equation of the line tangent to the graph of f at the point where f ?
 - A) y = 14x + 2
 - B) y = 14x 11
 - c) y = 14x 17
 - D) y = 18x 11
 - E) y = 18x 15

- 25. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 - 15t^2 + 24t - 60$. At what time t is the particle at rest?
 - A) t = 1 only
 - B) t = 4 only
 - C) $t = \frac{5}{4}$ only
 - D) $t = 1 \ and \ \frac{7}{2}$
 - E) t = 1 and 4
- 26. What is the slope of the line normal to the curve $3y^2 2x^2 = 6 2xy$ at the point (3, 2)?
 - A) $\frac{-3}{5}$ B) $\frac{4}{9}$ C) $\frac{-9}{4}$ D) $\frac{7}{9}$ E) $\frac{6}{7}$
- 27. Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(29) = 2, what is the value of g'(2)?
 - A) 13

 - **c)** $\frac{2}{29}$

 - D) $\frac{1}{2}$ E) $\frac{29}{2}$
- 28. Let g be a twice-differentiable function with g'(x)<0 and g''(x)<0 for all real numbers x, such that g(4)=12 and g(5)=9. Of the following which is a possible value of g(6)?
 - A) 15
 - B) 12
 - C) 9
 - D) 6
 - E) 3

Solutions

- 1. E
- 2. D
- 3. E
- 4. D
- 5. B
- 6. C
- 7. D
- 8. B
- 9. C
- 10. C
- 11. C
- 12. E
- 13. E
- 14. E
- 15. D
- 16. D 17. C
- 18. A
- 19. C
- 20. D
- 21. C
- 22. D
- 23. E
- 24. B
- 25. E
- 26. C
- 27. B
- 28. E