
Turvy with Applications of the Integral  --   Solution Key  by David Pleacher 

 

 

Here is the title right-side-up:  Two candles in a hurricane  
 
Here is the title upside-down: Uncle Sam wearing elf shoes 
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Find the area in square units bounded by the curves

2  and 2 .y x x y x x
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Find the intersections of the curves:
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2.   
Using your calculator, determine the area of a region

bounded by the curves sin , 3 , and 30 3 .y x y x y x
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Intersections are at 0,5,  and  10.243402.

Area 3 sin 30 3 sin 73.228 sq. units
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3.   
 
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Determine the area of the region bounded 

by  2 ,  and  4 .x y y x
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Find the intersection of  2  and  4 .
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0,3

Draw a rough sketch or note that 4  is larger 

than 2  when 0 3.
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4.   
The figure below is a square of base 4 meters topped by

a semicircle.  What is the average height of this figure?
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  You can think of a rectangle with this average height: 

 

       
  And realize that it will have the same area as the original figure. 

 

  

2 2

The area of the original figure is the sum of the areas of the semicircle and square.

1
Area (2) 4 2 16.

2

the area of the rectangle with average height is  Area 4 .

Setting the two equal to each 
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5.   
2 2

Determine the area bounded by

 2 5 and  4.x y x y
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Determine the intersections of  2 5 and  4,

so 2 5 4.

Intersections at  3,3.
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  Then find the length of each differential rectangular element: 

  
   2 2 2
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( ) 4 2 5 9 ,

since 4 2 5  when  3 3.
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6.   

Determine the area bounded 

by  ,  and  5.
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The area can be cut vertically to give
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or it can be cut horizontally to give
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2  square units.
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7.   
2

Determine the area of the region bounded 

3
by  sin , csc x,  and  .
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First draw a diagram and notice that the length of the rectangles

to be summed is given by the distance between csc x and sin .

So, the Area csc sin
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8.   
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Determine the area of the region IN THE FIRST 

QUADRANT bounded by the curves by  

sin cos x, 2 cos  and  4 4 .y x y x x y x
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You will need to use your calculator to find the intersections of the curves:

         4 4   intersects the curve sin cos x  at .928113.

         4 4   intersects the curve 2 cos   at .6927
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2 2 2

0 .692751

51.

From your diagram, you will need to split up the area into two integrals and sum:

     Area 2 cos sin cos x 4 4 sin cos x .379 sq. unitsx x x dx x x dx      

 

 

 

 

9.   5 5

2

2 2

Determine the number  so that 

  is the same as  .

a

x dx a dx
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10.   

A solid is formed by revolving around the x-axis the 

region bounded by the x-axis and the curve sin

for  0 .    Determine the volume of the solid.
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11.   

The acceleration function (in meters per second) and initial

velocity are given for an object moving along a straight line:

( ) 4 1, (0) 6.

Determine the total distance traveled by the object in the

fi

a t t v   

rst 5 seconds.
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First, you need to solve the differential equation to find the velocity:

Integrate ( ) 4 1 to get ( ) 2

Then use the initial condition (0) 6 to solve for 6

The velocity of the object is giv
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The total distance traveled by the object in the first five seconds is

       2 6s t t dt  
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3
Now, 2 6  has roots  2 and  .
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The function is negative for 2  and positive for  2.
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So, the total distance traveled by the object in the first 5 seconds is
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12.   

Determine the volume of the solid that results when

the region between the curve   and the x-axis, 

from 0 to  1,  is revolved around the x-axis.
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0 0

Sketch the diagram and slice vertically.
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13.   2

Determine the volume of the solid that results when

the region bounded by   and , from 0 

to  1,  is revolved about the x-axis.
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1
1 1 3 5

2 4

0 0 0

First, sketch the curves.  The top curve is  and the bottom 

curve is  throughout the region.  So, the volume is
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14.   2 3

Determine the volume of the solid that results when

the region bounded by   and , from 0 

to  1,  is revolved about the y-axis.
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First, sketch the curves and note that  is always on the

outside and    is always on the inside.

So to find the volume, you must evaluate the integral:

2
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15.   2

Determine the volume of the solid that results when

the region bounded by   and 4 ,  is 

revolved about the line  2.

y x y x
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You are not given the limits of integration, so you need to find where 

the two curves intersect by setting the equations equal to each other.
 

  

2 2 2  and 4 : 4 4 0

So,  0,4.  These will be our limits of integration.

Now, sketch the curve:

y x y x x x x x
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  Notice that the distance from the axis of revolution is no longer found by just using each  

  equation.  Now you need to add 2 to each equation to account for the shift in the axis. 
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Thus the radii are 2  and 4 2.  

This means that we need to evaluate the integral:
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16.   

Determine the volume of the solid that results when

the region bounded by 2 ,  4  and 0,  is 

revolved around the y-axis (use cylindrical shells).
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  First, draw a diagram and note that the thickness will be dx. 
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17.   3

Determine the volume of the solid that results when

the region bounded by ,  2  and the x-axis,

is revolved around the line  2.
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  First, draw the diagram, and note that the height of the disk = dy. 
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