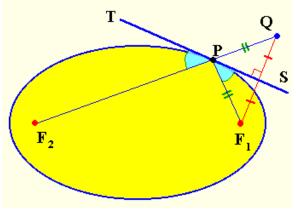

Parabola Reflection Property

Given: the parabola $y^2 = 4px$, F is the focus, QA is tangent to $y^2 = 4px$ at Q.

Reasons Proof: Statements 1. $y^2 = 4px$ let $m_1 = slope of QA$ let $m_2 = slope of DF$ 1. _ 2. 2. QD = QF3. m1 = y' = _____ 3. _____ 4. m₂ = _____ 4. Definition of slope 5. So DF \perp AQ 5. 6. AQ = AQ6. 7. $\triangle ADQ \cong \triangle AFQ$ 7. 8. 22 = 21 8. 9. ∠2 = ∠3 9. 10. $\angle 1 = \angle 3$ 10.


Prove: at any point Q, angle 1 = angle 3

Elliptical Reflection Property

Given: an Ellipse

To Show that a line drawn form one focus to the ellipse would reflect to the other focus

