Calculus Review Sheet (Sections 7-1 - 7-6)

- 1. Answer each of the questions below, writing the letter corresponding to the correct answer to the left of the problem number.
- 2. After completing all of the problems, place the letter corresponding to each problem number in the blanks below.
- 1. Determine the area bounded by the curve $y = x^3 9x$ and the x-axis.
- _____2. Evaluate $\int_{0}^{1} (3x^2 1)^3 x \, dx$
- _____3. Evaluate $\sum_{k=1}^{4} (k-1)^2$
- 4. Approximate the area under the curve $y = x^2 2x + 4$ between x = 1 and x = 4 by summing n = 6 inscribed rectangles of uniform width (use left endpoints).
- _____ 5. Evaluate $\sum_{n=1}^{5} n(n-3)$
- _____6. Evaluate $\int_{-2}^{0} x^2 (4-x) dx$
- _____ 7. Evaluate $\int_{1}^{12} dx$
- _____ 8. Evaluate $\int_0^{\frac{\pi}{6}} \sin(2x) dx$
- 9. Determine the area under the graph of $y = \sqrt{9+x}$ for $-9 \le x \le 0$
- _____ 10. Determine the area under the curve $y = x^2$ between x=0 and x=4 by taking the limit of the sum of the circumscribed rectangles (use right endpoint).

(OVER)

11. Prove by induction: $1 + 4 + 7 + ... (3n-2) = \frac{n (3n - 1)}{2}$

12. State the Fundamental Theorem of Calculus.

Answers:

(A) 8 (C) $\frac{127}{8}$ (D) 11 (E) $\frac{64}{3}$ (H) 28 (I) 14 (M) $\frac{1}{2}$ (N) 18 (O) $\frac{1}{4}$ (P) $\frac{81}{2}$ (R) $\frac{44}{3}$ (T) $\frac{5}{8}$ (U) 10 (W) $\frac{5}{24}$

(I) The amount of food one of the Washington Redskins eats at a meal is called a

$$\overline{1} \overline{6} \overline{8} \overline{1} \overline{8} \overline{6} \overline{2} \overline{3} \overline{8} \overline{9}$$
.

(II) What did the math teacher say when all of his students finished this worksheet early?