A Puzzle by David Pleacher

<u>Directions</u>: Solve each of the following problems on limits and continuity:

		MATCHING			
1.		A.	2		
2.	Test for Continuity at $x = 1$:	C.	-2.5		
	$f(x) = \frac{x^3 - 1}{x - 1}$; $f(1) = 3$	O.			
3.	,. 11	D.	0		
4.	$\lim_{x\to 1} 11 =$	E.	4		
5.	$\lim_{x\to 0}\frac{3}{x}=$	F.	$\frac{4}{5}$		
6.	$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} =$ Test for continuity at x = 2:	H.	36		
7.	$f(x) = \frac{x^2 - 4}{x - 2}$; $f(2) = 4$	I.	$\frac{1}{2}$		
8.	$x^2 - 5x$	J.	CONTINUOUS @ x=1		
9.	$\lim_{x\to 1}(x+1)=$	K.	NOT CONTINUOUS @ X=1		
10	$\lim_{x \to \infty} \frac{5x - 8x^2}{3 + x^2} =$	L.	DOES NOT EXIST		
11	$12x^3-7$	M.	-8		
12	$x \to -3$ $x^{-} - 2x - 15$	N.	CONTINUOUS @ X = 5		
13	To prove $\lim_{x\to 15} x - 7 = 8$, choose $\delta =$	O.	CONTINUOUS @ X = 2		
14	$\lim_{x \to 4} \frac{x^2 - 4x}{x - 4} =$	P.	NOT CONTINUOUS @ X = 5		
15	x^2	R.	NOT CONTINUOUS @ X = 2		
16		S.	14		
17	$\lim_{x \to 6} x^2 =$	T.	12		
			145		

$18. \lim_{x \to 12} \frac{x}{x^2 + 1} =$	U.	11
	V.	${\cal E}$
	W.	3€
	Y.	$\frac{\varepsilon}{3}$
	Z.	NONE OF THE ABOVE

- 1. Match each problem on the left (above) with an answer from the right-hand column.
- 2. Now write the corresponding letter to each problem in the spaces below.

7	5	3		10	9	18	17	
18	14	9	8	17		15	6	
16	14	13	14	15		3	12	; 14
18	17	14	1			4	6	18
18	14	16	3		18	7		
12	16	11	12	16	12	18	1	

Many thanks to Kathy Rivers for retyping this review sheet.