PROBABILITY

During the seventeenth and eighteenth centuries, this family included eight mathematicians of notable achievement. The \ast represents the one who pioneered in the theory of probability.

9	$\overline{3}$	15	2 15	1 11 10	4 7 7 13	2 4 11 6 3	
					NIKOLAUS		
14	10	3 16	11 11		NIKOLAUS	* <u>14 16 5 10 2</u>	
				11 13	5 10 7 16 4	12	
11	13	5 10	7 16	4 12	8 16 11 13	15 7 14 10 3 16 11 1	1
					14 10 3 16	11 11 14 16 5 10 2	

Fill in the blanks, above and below, with the represents the correct answer.	letter which
 A card is drawn from a standard deck of Find each of the following probabilities 	52 cards. $A = \frac{1}{2^{10}}$
 The card is a club. The card is a four. 	$B = \frac{1}{13}$
3. The card is a six or a seven. II. Two cards are drawn at random from a sta	
deck of 52 cards. 4. How many different pairs are possible	le? $D = \frac{1}{26}$
Find each of the following probabilities 5. Both are kings	E = $\frac{1}{3^{10}}$ F = $\frac{1}{10^2}$ oth G = $\frac{1}{10^3}$
6. Both are black.7. Only one is a heart.8. One card is the king of hearts.	$F = \frac{1}{10^2}$
 One card is the king of hearts or be are black. 	$G = \frac{1}{103}$
10. One card is the king of hearts or be red.	$H = \frac{2}{4.2}$
III. There are 15 men on a certain basketbal: 3 play center only, 5 forward only, and	L team.
guard only.	T - 2 +- 2
11. How many "starting 5's" are possible 12. If 2 men who play guard only are dre	· 1
from the team, how many different "starting 5's" are possible?	$L = \frac{13}{34}$
13. If you take a "wild guess" that 2	
particular forwards will be on the	M = 600 N = 630
starting team, what is the probabil that you are correct?	$0 = \frac{117}{442}$
14. What are the odds that a certain for	rward
will be on the starting team?	P = 360
IV. 15. On a 10 question multiple choice example 3 choices per question, what is the	am with $Q = \frac{1}{6}$
probability of getting all 10 correlif you are only guessing?	$R = \frac{1}{4}$
16. On a 10 question true-false exam who	at is $S = 300$
the probability of getting all 10 c	orrect $T = \frac{188}{663}$
if you are only guessing?	
	U = 1326
	V = 3 to 2