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Bending Light

Richard G. Montgomery

ight bends! Light
travels at different
speeds through
different
substances and
changes direction
as it changes speed. A pole
lowered into a pool of water

appears to bend. A man
standing in waist-deep water
appears shorter.

In this Pull-Out Lesson, we will
discuss the mathematics behind
the phenomenon of bending
light. We will look at Snell's
Law which relates the size of
the bend to the change in speed
as light passes from one
substance to another. The
student will be able to see why a
window does not appear to
bend the scenery even though
light travels slower in glass than
in air. Does sound bend also?
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ending light is not twisting the facts. A mirror provides

evidence that light bounces, but light also bends.
Evidence of this is the familiar “bent-pole” effect seen when a
pole is placed into still water, or your friend stands in a calm
swimming pool. His legs look shortened because they, or rather
their image, is bending as it passes from water into air. This is
an example of the refraction of light and results from differing
speeds of light.

Your-Turn! (Number 1) Get a pole and find a half-filled pool
of water. (I used the handle of a wooden mixing spoon and the
bathroom sink.) Hold the pole vertically and slowly lower it into
the water. See it shrink. Lean the pole to one side. See it bend.

ight travels at different speeds in different substances. It

travels slower through water than through air; slower
through air than through almost empty space. The c in Einstein’s
famous equation E = mc? is the assumed constant speed of light
in perfectly empty space (about 186,000 miles per second). Light
changes direction as it changes speed while passing from one
medium into another. Snell's Law is an equation which neatly
relates the size of the bend to the change in speed.
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medium B
(light speed v,)

o explain Snell's Law, suppose there are two adjacent

mediums, A and B, separated by a perfectly straight
boundary of no width (stretch your imagination). Also suppose
that light travels at a constant velocity v in medium A and
constant velocity v, in medium B. (See Figure 1.) Next imagine a
ray of light approaching the boundary at angle a (measured
from the perpendicular). (See Figure 1a.) As it crosses the
boundary it bends and departs at angle 8 (again measured from
the perpendicular). (See Figure 1b.) Snell's Law relates the values
of a, B, vy, v; as follows.

Snell’s Law: (sin a)/(sin ) = v,/va.

boundary

medium A
(light speed v,)

Figure 1.

(a.) (b.)

To see this law in action let’s suppose that light travels 1.5
times faster in medium B than in medium A: thus v, = 1.5v,.
Next let's compute the value of departing angle g for several
different values of approach angle a. First rewrite Snell's
equation as

sin B = (v;/vy) sin @ = 1.5 sin
or B = sin™ (1.5 sin ).

For @ = 20°, we have 8 = sin™ (1.5 sin 20°). On my hand
calculator I enter 20, push some buttons:

20 SIN x 1.5 = INV SIN

and read 30.865883, which is rounded to 31°. So, in this
situation with v, = 1.5v,, if a ray of light approaches the
boundary at an angle of 20° (measured from the perpendicular),
then it will depart at an angle of 31° (measured from the
perpendicular). This information I have recorded on Figure 2.
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Helping Detail

31°

31 20

boundary

N\ 7227

« = 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50°
Figure 2.

Your-Turn! (Number 2) You do the same for each of a = 0°,
10°, 30°, 40°, and 50°. Record your answers directly onto Figure
2. Draw and label the departing rays. Be neat, use a protractor.
(Don't forget to measure your angles perpendicular to the
boundary.)

What happened when you used a = 50°7 Any decent
calculator should have said ERROR. Why? Because 1.5 sin50° is
greater than 1, and so cannot be sin B for any 3. Does this mean
that a ray of light cannot approach the boundary at this angle?
Of course not; instead there is a critical approach angle ao
beyond which no light crosses the boundary. To find ao, set
B = 90 in Snell's Law and solve for a.

Your-Turn! (Number 3) Find the critical angle ao in the
situation above where v, = 1.5v.

Figure 2 indicates that when v, = 1.5v,,2 light ray bends
toward the boundary as it crosses it; that is, B is greater than .
This can be seen directly from Snell's Law.

(sin @)/(sin B) = v,/v2 = v,/(1.5v,) = 1/1.5.
Thus, sin B = 1.5 sin «,
so sin B > sin q,
andso B > «.

(Note these steps use the fact that all angles here are between 0
and 90 degrees.) The argument clearly will hold not only for the
case where v, = 1.5v,, but also anytime v, = kv, and k is a
constant greater than 1. These correspond to the situations where
light travels slower in medium A than in medium B.
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Bending-Fact #1. If light travels slower in medium A than in
medium B, then as a ray crosses from medium A into medium B
it bends toward the boundary.

Your-Turn! (Number 4) Figure out what happens when light
travels faster in medium A than in medium B. Does it bend
toward the boundary or away from the boundary? Now that
you have guessed the answer, use Snell’s Law to prove yourself
correct. (Proceed as we did above. First use the case with v, =
0.5v,. Then consider the general situation with v, = kv,, where
k is a constant between 0 and 1.)

Bending-Fact #2. If light travels faster in medium A than in
medium B, then as a ray crosses from medium A into medium B
it bends away from the boundary.

With these Bending-Facts in hand let's use them (without
twisting) to explain why a window does not appear to bend the
scenery. Why should it? Because light travels slower in glass
than in air. Why doesn't it? Because the window bends the
scenery twice: first away from a boundary (by Bending-Fact #2),
then toward a boundary (by Bending-Fact #1). (See Figure 3.)
Snell’s Law can be used to show that the final outgoing light rays
are parallel to the incoming light rays, so the scenery looks just
about like it should. In Figure 4 we want to verify that entering
ray r, is parallel to departing ray r,. Snell’s Law gives us two
equations, one for each boundary:

(sin a,)/(sin B,) = (v4/vg)
and (sin a,)/(sin B;) = (ve/v4),

where v, and vg are the speed of light in air and in glass,
respectively.

So (sin «,)/(sin B,) = (sin B.)/(sin az).
But 8, = a;, so sin @, = sin ,,
and a, = 62,

which means that ray r, is parallel to ray r, as hoped.
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ack now to your friend in the swimming pool. To

explain his shrunken legs let us first be content with his
big toe. (See Figure 5.) Bending-Fact #1 explains why his toe
appears to be higher than it really is. Imagine a light ray
traveling from the toe to your eye. As it passes from the water
into the air it bends downward. But your eye doesn’t know that
and so it sees the toe above its actual location. Now look at
your whole friend. Although he appears oddly shortened he's
really all there (Whew!). It's just that all his underwater parts
appear higher than they really are, and so you have one
distorted friend. That's not twisting the facts, that's Bending-
Facts in action.

water

Figure 5.

(Apparent Location)

Toe (Actual Location)

Your-Turn! (Number 5) Explain how the shrink and the bend
you observed with your pool and pole (in Your-Turn Number 1)
are each examples of Bending Fact #1 in action.

Final Twists & Bends ‘Snell’ refers to the Dutch
mathematician Willebrord Snell who in 1621 discovered the
equation for the bend when light passes from air into water. The
bend had been observed and measured much earlier (accurate
tables exist from 140 A.D.). About 1650 the law was finally
given a logical basis by the French mathematician Pierre de
Fermat. Chapter 26 of The Feynman Lectures has a nice
discussion and non-calculus derivation of Snell's Law as Fermat
could have done it. Also found there are applications to optics
and unexpected bending facts (like: when you see the sunrise, the
sun is still below the horizon!).

Snell's Law is valid for sound as well as light. (Sound also
bends!) Listening to the Earth tells how bending sound and
Snell's Law are used to learn about the earth’s underground.
Included is a calculus derivation of the law for students who
know about derivatives.
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Figure 2.

Your-Turn! Number 3.

SINX = Dtwith 8 = 90°
sin B8 V2

and v,/v; = 1/1.5 = 2/3,
sosina = 2/3
and ap = 41.8* degrees.

Your-Turn! Number 4.

Let v; = 0.5v,.
Then SR _ v _ 1
sin 3 V2 0.5’
so sin 8 = 0.5 sin a.
But then sin 8 < sin a
and 8 < « as desired.
More generally,
let v; = kv, with0 < k < 1.
Then sin 8 = k sin «,
so sin B < sin a (as 0< k < 1)
and B < « as desired.
Note: all values are positive as @ and 3 are between 0 and 90.



